国产成人综合久久久久久,亚洲国产成人久久综合碰,精品露脸国产偷人在视频,99久久精品免费看国产,国产免费一区二区三区在线观看,好吊妞国产欧美日韩免费观看,国产精品免费看久久久无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > ATCC代理 > ATCC-BYS0110 Human [African American Male] Induced Pluripotent Stem (IPS) Cells
最近瀏覽歷史
聯(lián)系我們
  • 0574-87157013
  • mingzhoubio@163.com
  • 浙江省寧波市鎮(zhèn)海區(qū)莊市街道興莊路9號
  • 創(chuàng)e慧谷42號樓B幢401室
ATCC-BYS0110 Human [African American Male] Induced Pluripotent Stem (IPS) Cells
ATCC-BYS0110 Human [African American Male] Induced Pluripotent Stem (IPS) Cells
規(guī)格:
貨期:
編號:B242540
品牌:Mingzhoubio

標準菌株
定量菌液
DNA
RNA

規(guī)格:
凍干粉
斜面
甘油
平板


產(chǎn)品名稱 ATCC-BYS0110 Human [African American Male] Induced Pluripotent Stem (IPS) Cells
商品貨號 B242540
Organism Homo sapiens, human
Tissue bone marrow CD34+ cells
Cell Type sendai virus reprogrammed hiPSC
Product Format frozen
Biosafety Level 2  [Cells contain Sendai viral DNA sequences]
[It is the responsibility of the investigator to determine appropriate safety procedures for use with this material. As a reference, laboratory safety is discussed in the publication Biosafety in Microbiological and Biomedical Laboratories and can be accessed by searching "BMBL" at www.cdc.gov.]

Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.

Disease Normal
Age 33
Gender Male
Ethnicity African American
Storage Conditions Liquid Nitrogen Vapor Phase (-130°C or colder)
Karyotype Normal karyotype, 46 XY
Derivation

ATCC-BYS0110 Human Induced Pluripotent Stem Cells (iPSCs) were derived from bone marrow CD34+ cells obtained from a healthy African American male donor.

Antigen Expression SSEA4, Tra-1-60 (expressed on undifferentiated hiPSCs) >85%; SSEA1 (expressed on differentiated hiPSCs) < 15%.
Complete Growth Medium

ATCC iPSCs have been adapted to feeder- and serum-free culture conditions.

The base medium for this cell line is Pluripotent Stem Cell SFM XF/FF (ATCC® No. ACS-3002) which is a ready-to-use medium for serum-free and feeder-free iPSC culture. 

Subculturing

Cell culture dishes are coated with CellMatrix Basement Membrane Gel (ATCC® No. ACS-3035) to provide a surface for the attachment of iPSCs.

Coating Procedure:

  1. Thaw CellMatrix Gel on ice and swirl gently to mix. Important: CellMatrix Gel will solidify in 15 to 30 minutes above 15°C. Keep CellMatrix Gel, vials and pipette tips on ice at all times to prevent CellMatrix Gel from solidifying. If air bubbles form, they may be eliminated by centrifuging CellMatrix Gel at 300 x g for 10 minutes at 2°C to 8°C.
  2. Determine the appropriate volume per aliquot based on concentration and usage.
  3. Example: 2 mL of CellMatrix at 150 μg/mL is required to coat one 6-cm dish. To coat two 6-cm dishes, prepare as follows:

    Dilute CellMatrix in DMEM:F12 to a working concentration of 150 μg/mL. For instance, if the protein concentration of CellMatrix (on certificate of analysis) is 14 mg/mL, then: (4 mL) x (0.15 mg/mL)/(14 mg/mL) = 0.043 mL. Therefore, add 43 μL CellMatrix directly in 4 mL cold DMEM: F-12 Medium

  4. Cell culture dishes coated with CellMatrix Basement Membrane Gel should be incubated at 37°C for one hour. Aspirate coating solution and immediately plate the cells. It is critical that the coating does not dry out.
Volumes used in this protocol are for a 75 cm2 flask.

Post thaw day 1, perform a 100% medium change and remove all cells that did not attach. Perform a 100% medium change every day. Passage the cells every 4 to 5 days (80% confluent) at an appropriate split ratio (a 1:4 split ratio is recommended). If the colonies are close to, or touching each other, the culture is overgrown. Overgrowth will result in differentiation.

ROCK Inhibitor Y27632 is not necessary each time the culture medium is changed. It is required when cells are recovering from thaw on CellMatrix Gel-coated dishes containing 5 mL Pluripotent Stem Cell XF/FF medium/6-cm dish.

This protocol is designed to passage stem cell colonies cultured in a 6 cm dish, using Stem Cell Dissociation Reagent (ATCC ACS-3010) to detach the cell colonies. The recommended spilt ratio is 1:4. Volumes should be adjusted according to the size and number of the tissue culture vessels to be processed. 


Reconstitution of Stem Cell Dissociation Reagent

Lyophilized proteins tend to be hygroscopic. Bring the vial of Stem Cell Dissociation Reagent to room temperature before opening. The vial should not be cool to the touch. Once opened, the lyophilized material should be stored desiccated. The specific activity of the reagent is found on the certificate of analysis. Dissolve the appropriate amount of Stem Cell Dissociation Reagent in DMEM: F-12 Medium to prepare a 0.5 U/mL working solution.

  1. Dissolve the appropriate amount of Stem Cell Dissociation Reagent in DMEM: F-12 Medium to prepare a 0.5 U/mL working solution. Example: To prepare 40 mL of a 0.5 U/mL working solution: Specific activity of Stem Cell Dissociation Reagent (on certificate of analysis) =1.46 U/mg (40 mL) x (0.5 U/mL)/(1.46 U/mg) = 13.7 mg Dissolve 13.7 mg Stem Cell Dissociation Reagent in 40 mL DMEM: F-12 Medium. 
  2. Filter sterilize through a 0.22 μm filter membrane. 
  3. Aliquot into working volumes according to routine usage. 
  4. Store aliquots at -20°C for up to three months. Avoid repeated freezing and thawing. Thawed aliquots may be kept at 2°C to 8°C for up to two weeks. 

Note: Addition of ROCK inhibitor has been shown to increase the survival rate. The use of ROCK inhibitor may cause a transient spindle-like morphology effect on the cells. However, the colony morphology will recover after subsequent media change without ROCK inhibitor.

  1. Warm an aliquot of Stem Cell Dissociation Reagent working solution to room temperature.
  2. Aspirate and discard the stem cell culture medium.
  3. Rinse the cells twice by adding and discarding 4 mL of DMEM:F12.
  4. Add 2 mL of Stem Cell Dissociation Reagent working solution to the dish.
  5. Incubate at 37°C for 2 to 5 minutes.
  6. Aspirate the Stem Cell Dissociation Reagent and gently rinse the colonies with 4 mL of DMEM: F-12 Medium, taking care not to dislodge the cells during manipulation.  Aspirate the DMEM: F12 rinse and discard.
  7. Add 2 mL of stem cell culture medium to the dish, and detach the cells by pipetting up and down 2 to 3 times with a 1 mL tip. Take care not to over-pipette the culture into a single-cell suspension as single cells will not establish colonies after seeding
  8. Transfer the cell aggregates to a 15 mL conical tube.
  9. Add an additional 3 mL of stem cell culture medium to the dish to collect any remaining cells. Transfer this rinse to the 15 mL conical tube containing the cell aggregates.
  10. Centrifuge the cell aggregates at 200 x g for 5 minutes.
  11. Aspirate the supernatant and discard.
  12. Add 1 mL of stem cell culture medium. Gently resuspend the pellet by pipetting up and down 2 to 3 times with a 1 mL tip, maintaining the small cell aggregates. Take care not to over-pipette the culture into a single-cell suspension as single cells will not establish colonies after seeding.
  13. Plate the cells on CellMatrix Gel-coated dishes containing 5 mL Pluripotent Stem Cell XF/FF medium/6-cm dish.
  14. Incubate the culture at 37°C in a humidified 5% CO2/95% air incubator. Perform a 100% medium change every day. Passage the cells every 4 to 5 days (80% confluent).
Cryopreservation

For optimal results, cryopreserve stem cell colonies when the cell cultures are 80%confluent. This protocol is designed to cryopreserve stem cell colonies cultured in a 6 cm dish.

  1. Detach stem cell colonies from the dish as described in the recommended subculturing protocol (steps 1-11). Gently tap the bottom of the tube to loosen the cell pellet.
  2. Take the Stem Cell Freezing Media from storage and swirl to mix. Keep cold. Decontaminate by dipping in or spraying with 70% alcohol.
  3. Add 2 mL of cold Stem Cell Freezing Media (ATCC ACS-3020) to the tube. Gently resuspend the pellet by pipetting up and down 2 to 3 times with a 1 mL tip, maintaining the cell aggregates.
  4. Immediately transfer 1 mL each of the cell suspension into two labeled cryovials.
  5. Freeze the cells gradually at a rate of -1°C/min until the temperature reaches -70°C to -80°C. A cryopreservation container (e.g., CoolCell® freezing container) may also be used.
  6. The cells should not be left at -80°C for more than 24 to 48 hours. Once at -80°C, frozen cryovials should be transferred to the vapor phase of liquid nitrogen for long-term storage.
Cells per Vial ≥ 30 colonies after 5 days when seeded as directed
STR Profile Consistent with expected
Sterility Tests

No growth after 21 days

Mycoplasma - None Detected

Zero Footprint Confirmation - None Detected

Viral Testing

Hepatitis B: Negative
HPV: Negative
HIV1: Negative
CMV: Negative
EBV: Negative

Functional Tests Pluripotency Score >20, Novelty Score < 1.67
Name of Depositor ATCC
Year of Deposit 2013
References

Lee CAA. Modeling and rescue of defective blood-brain barrier function of induced brain microvascularendothelial cells from childhood cerebral adrenoleukodystrophy patients. Fluids Barriers CNS 15(1):9, 2018. PubMed: 29615068

梅經(jīng)理 17280875617 1438578920
胡經(jīng)理 13345964880 2438244627
周經(jīng)理 17757487661 1296385441
于經(jīng)理 18067160830 2088210172
沈經(jīng)理 19548299266 2662369050
李經(jīng)理 13626845108 972239479
英吉沙县| 宝应县| 宜阳县| 阳谷县| 长海县| 曲周县| 邵东县| 桐柏县| 自贡市| 池州市| 彭水| 吉安市| 蒙城县| 宁河县| 木兰县| 景洪市| 泽库县| 长乐市| 图木舒克市| 兴文县| 尼勒克县| 云南省| 南雄市| 融水| 榆中县| 清远市| 乡城县| 柏乡县| 承德县| 绥化市| 安溪县| 黎川县| 邢台市| 张家港市| 蕲春县| 绵阳市| 登封市| 云和县| 左权县| 屏东市| 探索|